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ASYMPTOTICS FOR CONFIGURAL ESTIMATORS

Stephan Morgenthaler

M.I.T.

Statistics Center

ABSTRACT

This paper examines the asymptotic properties

of compromise estimators. By this we mean an

estimation method which compromises between a fin-

ite number of sampling situations in a small sam-

ple optimal way. We develop the asymptotic theory

of such estimators and show that under a specific

choice of sampling situations the compromise esti-

mator is asymptotically robust in Huber's sense.
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ASIhPTOTICS FOR CONFIGUlAL ZSTIMATORS

Stephan Morgenthaler

M.I.T.

Statistics Center

1. Introduction

Configural polysampling denotes a method of estimation

which is geared to small sample sizes and produces *robust*

methods (see Pregibon and Tukey (1980)). There are important

differences to the robustness philosophy as developed by

Huber (see Huber (1964)). Since in small samples the distri-

butions of estimators are quite intractable one has to rely

on numerical methods in order to *evaluate even relatively

simple performance summaries like the mean-square-error.

This holds true except in some simple cases -- like the

Gaussian sampling model -- where a few expectations can be

evaluated in closed form. In this connection it is important

for the statistical community to realize that numerical

methods are perfectly acceptable. They do, however, limit

the number of sampling situations we can take into con-

sideration. This in contrast to an asymptotic approach,

where for simple models an infinity of sampling situations

can be considered simultaneously (Huber (1964)).
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Pitman (1938) for example solves the small sample problem

for a single sampling situation in a location and scale set-

ting. In this paper we will show what happens if Pitman's

method is extended to two sampling situations. And we will

address the question of the asymptotic performance of such

estimators.

An asymptotic analysis is the simplest way to learn

something about the behavior of an estimator in a variety of

sampling situations. But it only gives a partial answer and

we should not forget the more important approach based on

performing *experiments' for small sample sizes. This paper,

however, will restrict attention to asymptotic discussions.

In Section 2 we will introduce the idea of compromise

estimators and discuss their optimality properties. Section

3 contains the corresponding asymptotic theory. As an exam-

ple we define a compromise estimator which is asymptotically

everywhere at least as good as Huber's minimax estimator.

2. Configural Estimators

2.1. Pitman's Estimator

Let x1 , x 2 ,...x n be n observations in an i.i.d. sam-

pling situation from F(x - az) where 1-1(x) a F(-x) for all

x. We also assume that F(x) , 0 or 1 for any finite x and

furthermore that F() has density f() with respect to Lebes-

gue measure.

We restrict attention to symmetric sampling situations in

:i:::.. - • - . .....%.- ... .. .. rai.
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order to avoid the issue of what sparameter" we try to esti-

mate. Symmetry of the underlying distribution allows us to

define a target, namely J- center of symmetry. Furthermore

we will not get into any discussions if later on we allow

for two - or many -- different sampling situations. The

center of symmetry is well defined for all symmetric shapes

which means the estimation of a is a well defined problem

for a large class of sampling situations.

The solution Pitman gives is

00 n
r 11 f(xi + r) dr

?pCl~~eDn) - 00 Lil (2.1)
f(i + r)

-oo i-I
(see Pitman (1938)). This estimator has the smallest mean-

square-error among all location equivariant estimators.

Location equivariance is a very reasonable restriction on a

location estimator To, it means that

T(x1 + rl...Pxn + r) a T(XlD...,Xn) + r, r4R, (2.2)

i.e. the estimator changes in the same way as the sample.

remarks: (1) The most revealing way of deriving (2.1) is

through the concept of Oconfigurationsm. By this notion we

mean the pattern of the points in our (ordered) sample and

it is easily seen that this is an ancillary statistic. The

Pitman estimator tltmn is chosen such that conditioned on the

configuration the estimate is unbiased. Since the condi-

tional variance can not be affected by the choice of the

.......... ... .
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estimate (under equLvarLance), this has to produce the smal-

* lest mean-square-error.

.. (2) The conditions on f() such that (2.1) exists are dis-

cussed in Pitman (1938).

Formula (2.1) produces an estimator T. of the center of

symmetry gz no matter what the underlying sampling situation.

It therefore need not be so that the xi's are sampled from

P (x-P).

Lot us therefore introduce G(x-p) -- again G(x) I 1 - G(-x)

for all xzs -- as the sampling situation for xI ,.O..Xn -

This is a new way of looking at the Pitman estimator T, and

it of course immediately lets us see the optimality property

in a new light. If e.g. P * I and G - Cauchy we are looking

at the behavior of the arithmetic mean under Cauchy sam-

pling. If we are open minded about the assumptions we base

our inference on, we have to. admit that in small samples we

can not with any reasonable precision know what the underly-

ing sampling situation is nor should we attempt to make

inferences about it. Huber (1964) formalizes the idea of a

robust method as a procedure which "behaves well* in the

neighborhood of a parametric model. Huber therefore would

allow Go to be chosen somewhere near F() and he modifies TF

in such a way that the behavior of the new estimate is

acceptable for all allowed GO(s. This leads us away from

considering estimates like T which are optimized at a sin-

gle *point". Since -- in small samples -- we will never be

able to tell at which "point' we are, it ought to be ob-Lous
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that single-point-optimizatton is a bad strategy.

2.2. Compromise Estimators -

Let us now consider the case where x, ,...,Z n is a sam-

pie from either Fl(x-3) or F2(x- ), where F1 and F2 satisfy

all the constraints of F (see beginning of Section 2.1). We

are now interested in location equivariant estimators which

optimize at two poLintsR, namely F, and F2, simultaneously.

This is obviously impossible. However, decision theory

teaches us that estimates of the form

Tr, F2 , (XI, ...,Xn)

r {~IC f (Zi +9 r) + 1~ - 2 Nz + r01 dr
.Ii. (2.3)n n

14 f + Vr) + (1-4) f Nt2 (,i + r)1 dr

(0 < 4 <1) are bi-optimal in the sense that they cannot be

improved in both sampling situations F1 and F2 simultane-

ously (see Ferguson (1968)).

remarks: (1) We can also write

,  , (x' ,xn) -
F P2 vc

SW7P (31 l ,... xn) T (xl '"u",Xn) +

w.€( wF (xl ,...,x3n)  TF2[X 1  ,...,x n )  (2.4).-
2 2

where

L%
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n f( ik(x i . r) dr

n n

(k =1, 2) and TFk() is defined in (2.1). We therefore can

interpret the family of bi-optimal estimators as a weighted

mean of the single-situation optimal estimators. Note, how-

evert, that the weights are *adaptive", they depend on the

sample values. Of course any equivariant estimator can be

represented as a weighted mean of the single-situation

optimal estimators. What matters here is the simplicity and

form of the weights together with their small sample

optimality property.

(2) It is clear from (2.3) that T 1  T, 0 2 and

Till F2, 1 TF1.

(3) The picture which helps us most in understanding the

compromise estimators is shown in Figure 2.1.

Figure 2.1: plot of the mean-sqare-errors in the two situa-

tions M.s.e. in F1

compromise estintors
minimum posslblj-

in F1  m.s.e. in F2
minimum possible in F22

Note that since we only consider location equivariant esti-

mators the risk in any given situation does not depend on

* ° . . . , .. % , % " " . . .. . **. ..- .-.. .. . S .. . . . . . .
• ". '..' .'. ;.; , .. .... • ; .. . .. . .. .. . .. .. ..-. ',.. ... .. . . . ... . . ..'-- .. - '. . -. . <.v.'.' .. . ,. . .. : .,.
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the parameter value u (see Ferguson (1968)). The bi-optimal

or compromise estimators ace the ones which lie on the con-

vex boundary curve.

(4) A Bayesian interpretation of the estimator (2.3) is pos-

sible. In that framework (c(, 1 - d) is a prior distribution

on the set of underlying sampling shapes. :2

(5) In order to implement (2.3) in an actual application,

the formula (2.4) has some interesting interpretations. Pre-

gibon and Tukey (1980) derive the formulas from the point of

view sampling. This leads to the consideration of dif-

ferent weights and w.

1 2

The choice of the two compromising distributions F1 and

F2 is of importance in actual applications of the technique.

In many applications it is traditional to consider P1 - ,

the Gaussian shape. The choice of F2 is somewhat related to

the choice of the contamination parameter 4 in Huber's

model. F2 will influence two aspects (see (2.4)):

i) the 'relative weights" w.1 and wp2

(ii) the *other" optimal estimator TF

These two aspects have an interpretation in the theory of

K-estimators. The first is connected with the choice of tun-

ing constants, like k in Huber's 1O.-function (1'k(X) a max(-

k,min(k,x))), and the second with the shape of the i'-

function. From small sample studies we know for example that

a redescending 16-function is advantageous -- it costs little

..... 7
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and buys a lot. This is reflected in the theory of comprom-

ise estimators by the choice of F2 and by how far F2 is away

from *.

3. The Asymptotic Behavior of Compromise Estimators

In this section we are going to explore what happens to

compromise estimators (see (2.3) or (2.4)) if we sample from

a distribution Go and let the sample size n grow. We will

see that the weights WPl and wF2 usually tend to (0,1) or

(1,0), respectively. A compromise estimator for large sample

sizes therefore will be close to either the optimal estimate

under FI' or the optimal estimate under P2* This is a reason-

able behavior since the *information" about the sampling

situation Go) grows as the sample size gets large. The dis-

tinction between Fl and P2 is therefore more and more estLm-

able. In a few words then, we can say that compromise estL-

mators exhibit an adaptive behavior with the relative

weights wl1 and wF2 (see (2.4)) gauging the adaptation.

3.1. The Asymptotic Behavior of the Relative Weights

Suppose xI ,...,xn is a sample of size n from G(x-i).

We assume that Go is symmetric around 0. The relative

weights are defined as

w F(x l ,...,xn)=

n
r fx + r) dr

n n (3.1)
101 ff1 (x L + f i 21 i + 0)1 dr

oO .. .. . . . . .. .* % * *... •*- -:< .*-:,;K K K Q :
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(k - 1 or 2), where the notation is the same as in (2.4).

The following Lemma treats an *overly nice" case.

~Lemma 3.1

Let us assume that both -log f (x) and -log f2 (x) are convex.

And let us furthermore

assume that Go is such that the functions

A (r) - log f1 (x + r) dG(x)

and

A2 (r) " log f2 (x + r) dG(x)

exist for all r and achieve a unique maximum at r-0. If

, log fl(x) dG(x) >,t log f2 (x) dG(x) (3.2)

it follows that

VT (Xlu?**uxn)
2

, XlF,.,Xn) ---> 0 a.s.

proof: Let X1, X2 ,.• denote a sequence of iid random vari-

ables with common distribution G(x). From (3.1) we have

n
w7 2 (XI 's*Xn) t . f2 (Xi + r) dr

2i-wr(XI,...,xn)  n
7  n f 1 (Xt + r) dr

i-I.

Now

n
Xl, ...,. -- f(X1 + r) dr

n i-

n

exp(n(n  1 log f(Xi + r))) dr

. . . -" "."" . . . . - ,. . . . . . .. . . . . . - - p
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- texp(n AnlW) di,

where p

A - I log(f(X1 + r)-

and f stands for either fl or f2 "

Since we are interested in the large sample behavior of

(lXl,...,Xn) we can use an asymptotic expansion argument to

approximate I().

We know that for large n

Jrl~Dn exp(n(A n(R0) -Z A An(RO)Cr- R 0) 2 )d

1

explnAn(Ro)) 1(12g)1 (

where Rn denotes the point where the (random) function An 0
0- n

takes its maximal value. Such a single maximum exists

because of our convexity assumptions.

The theory of asymptotic expansions is treated for example

in Chapter 6 of Dingle (1973).

If we blend the probability structure which underlies the

sequence X1, X2 ,... (due to iid sampling from Go) with the

asymptotic approximation (3.3), we can say something about

the behavior of the right hand side in (3.3). Because of the

strong law of large numbers and our assumptions we have

An(r) -- A(r) a.s. fpr all r (3.4)

and from this ve can conclude that

"I o

°'.°'-
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so that

1 log I(Xi,.'. ,Xn) -- A ((O) = log f(x) dG(x) a.s.
n

where fo denotes either f1 () or f2() (see (3.3)).

We therefore conclude from

,1 log fi(x) dG(x) >,t log f2 (x) dG(x)

that

log I(Xl,...,X n) - log 12(X,..X n)

WF (xl, q G ,Xn)" (A) logV 7 (XlIOOXn) - constant > 0 a.s.

where Il (llX,...n), .2(Xl...,Xn) refer to fo - fl(), f()

" f2 (), respectively.

From this last statement the theorem follows imediately.

Lema 3.1 is not good enough for our purposes since the

assumption about A (r) is not always satisfied. If for

example f1  .6 and GO) has an infinite second moment then

A1 (r) -oo for all r. But we would of course still expect

that Lemma 3.1 holds, in fact we would hope for "very fast

convergence of the ratio of relative weights.

Lemma 3.2

Let us assume that both -log fi(x) and -log f2 (x) are convex.

And let us furthermore

assume that Go is such that the function

.-.'..','.,% ': . *. *,.-.,, .. , . . , , -. ,... ... . ...... • .% r• -. .. . . .. . . ... . ... 0.
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A2 1r) - log f 2 (x + r) dGlx)

exist for all r and achieves a unique maximum at r-0.

I f log f 1 (x) dG(x) - -oo then it follows that

w (xI, •. •,xn)
|w, (x11 .'""=n) --- 0 a..

;roof: Use the same argument as in the proof of Lemma 3.1

and note that

log If(X1 ,...,Xn) < any constant a.s.

remarks: (1) The asymptotic expansion (3.3) shows how

closely the maximum likelihood estimator is connected to the

Pitman estimator. Note that A"*(0) is equal to the Fisher L

information if Go - F(), i.e. the sampling situation and

the modelling situation agree. We will see below that the

maximum likelihood estimator T. is indeed asymptotically

identical to the Pitman estimator.

(2) It is reasonable to believe .that Lema 3.1 holds in

greater generality. The convexity conditions on the log den- --

sities are probably not needed.

Corollar 3.1 Under the assumptions of the Leama 3.1 or

Lema 3.2 and if

J log fi(x) dG(x) >, log f 2 (x) dG(x)

then the compromise estimator T It F (0) is asymptoti-

cally equivalent to the Pitman estimator .

proof: Apply the Lemmas to Formula (2.4) .

S<'
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remarks: (1) Corollary 3.1 states that as the sample size

increases the compromise estimator will pick either one of

the two single-situation-optimal estimates depending on

(3.2).

We therefore expect that

log f (x) dG(x) - , log fi(x) dG(x)

- log f1 (x) dG(x) (3.5)

is a quantity which decides whether the sampling situation G

is "closerw to the modelling situation F1 or the modelling

situation F2 .

The quantity (3.5) is closely related to the Kullback-

Leibler mean information for discrimination (Kullback and

Leibler (1951)). Their formula is

fl(x)
1(1:2) -, log( f2 (.)) f1 (x) dx,

where 1(1:2) is the mean information for discrimination per

observation from samplinq situation Pie

(2) The asymptotic behavior of the compromise estimators

(2.3) does not depend on €t (unless (3.5) - 0).

(3) More results about Pitman estimators can be found in

Johns (1979) and Klaassen(1981). George Easton has proved

the results given in Section 3.1 for the more general case

of unknown scale (Easton (1984)).

3.2. Asymptotics of the Pitman Estimator

.. .- , . '... . , . .,., .' . °.. .. ' .' . . . .. .. . . , .,. . . - . . , ' ., -, ' . . - . . . - . . . . . . . . * . . . . . .
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In order to get asymptotic efficiencies for the

compromise estimators we need to know more about the asymp-

totic behavior of the Pitman estimators Ti1 and T. . Port

and Stone (1974) provide the information in the case where

the sampling situation and the modelling situation are

identical. In our more general setup we can argue the fol-

lowing way:

,J"r exp(nAn(r)) dr

Txllz'''''xn) = - ,q exp(n An r)) dr'

where

dnon fi i +r (l ~ l

If we expand the numerator asymptotically we get

Til(1 , i Xn) -

exp(n An (rn)) jt r exp(- n (rno) Cr -0r))

Sexp(n A n(f)) dr

-- n

r0

where r nmaximizes An r). We therefore showed that asymptot-

ically the Pitman estimator and the.maximum likelihood esti-

[. mator (- rn) agree. This agreement is good enough to can-

dlude that the asymptotic distributions are the same. Huber

(1967) then provides the necessary results.2

3.3. Huber's Contamination Model: An Example

To illustrate the use of the theory we developed let us

'*.** .%--- 9 -.. ,
* -

4 v -U-~ ***•-* r
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look at the compromise estimators based on the two modelling

densities

(2w)
f 2(z) (1-4) O(X) if Ixl < k

exp - kixl) otherwise

(2w)

(vhere k is such that2 - 24(-k) - -

The alternative density is of course the least favorable

choice in the class of distributions

1(l - 4)() + 4() ()symmetric) (see Huber (1964)).

The asymptotic variance of an estimator compromising

between these two symetric situations (see (2.3)) will be

equal to either of the asymptotic variances of the Pitman

estimators

- arithmetic mean
T1

or

_TY Pitman estimator for the least
favorable distribution.

If we sample from distribution G() we have for these asymp-

totic variances (a.G - z dG(x))

as. var(T 7 ) = J (x - 0G) dG(x)

06Pk( N a ,2 dG (x )

as. vat (TP ('(- ))dG)
2 = 7'k(- " G) dG(x)) 2

V 1'k(xoG



where *,6(X) *-f'* 2 (x3/f 2 (x) amax(-k, min(k~x)).

In his 1964 paper Huber shows that the K-estimator

based on Oois asymptotically minimax for sampling situa-

tions chosen from the contamination class. Since T~ has the
2

same asymptotic behavior as this K-estimator, the same claim

can be made for T. a Note, however, that for finite sample
2

sizes T. will be superior. The following Proposition
2

explains the asymptotic behavior of the compromise estima-

tors (see (2.3)).

Proposition 3.1 Let GWx - (1-4)j,§W + -43Wx where H(x +

N(-x) -1 for all x's and H() puts all its mass outside the

interval C-k,k], but is otherwise arbitrary. Furthermore

assume that 0 < .4 < 0.5. Then

as. varG (compromise estimator) C as. varG(Huber's minimax
estimator)

proof: Prom Lemma 3.1 and Lemma 3.2 we know that

j~log f Wx dG~x W log f 2 Wx dG(x)

jr I{log 1r 12 dG(x) -:log (1- dG(x)

(2m)2 (2m)~

kc 1 2 -2 I2 dGx

-~-xdG(x) 2 O kixi) Gx

oc 2 2
--log(1-4) + 2 .jkjxI - - j dG (x) (3.6)

is the quantity which decides about the asymptotic variance

of the compromise estimator. Note that we made use of the
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symmetry of the sampling distribution G in the derivation of

(3.6). If (3.6) is positive the compromise estimators will

behave asymptotically like the arithmetic mean, otherwise

like the Huber-estimator. All that remains to be considered

therefore is the case where (.6) is positive (or zero)

because in the other case the assertion of the Proposition

is trivial.

First note that (3.6) can only be positive if G has

finite variance. Using our assumptions about G =

(1-4)4 + 4H stated in the Proposition, (3.6) can be written

as

002 x2

-1og(1-4) + 2(1-4) (kixi - - T) O(x) dx +

k 2  
2

4 ~~ (kll - "T) dE(x)

o2 2
- -log(1-4) - (1-4) j (x-k) dI(x) - .1h (x-k) 2 dBx)

-log(1-4) - (1-4) ko (k) + *(-k) (1+k2) -2 2

(3.7)

where 4 = , x2 dH(x) is the variance of the contaminating

distribution.

A comparison of the asymptotic variances of the sample

mean and Huber's estimator is not hard. We have

as. varG(sample mean) = (1-4) + 4 (3.8)

2.(,,k (x)) dG (x)

as. varG(Huber- estimator) (r 10'ok W) dGx))2

, .*. -. , ,' ,' " " r .r. .. ,? , ',. .,
e,

,'.,. , ,_._..- ' .. -,, '..'.'..'.. . . .".,.... . . . . . . .,.. . . . . . .. "....-.. . . . . .. ,...'. ..
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k 2 0 2
x2 dG(x) + 2 : k dG(x)-k k

*k (x) dr- (x) ) 2
k

2 2 2
(1-4) 2 d:(X) + k 4 + 2k2(l-4)4(-k)

i m , -k

-c (1-4) (.(k) - -k)) 2 9)

In this last formula we have again used all our knowledge

about the sampling situation Go.

What remains to be shown is

non-negativeness in (3.7) --> 3.8 < (3.9).

But (3.7) > 0 ->

42 <-2 log(l-.4) + 2(1-4)kO(k) - 2(1-4)4(-k) (l+k 2 ) - 4k 2

and therefore we have (3.8) - (1-4) + 4 4 <

(1-4) + log(T - ) + 2(1-4)k (k) - 211-.1)1-k) (1+k 2 ) -. k2

Using the equation linking 4 and k

24
-26(-k) -

we can simplify and get

(3.8) _ log(--) + (1-4)k k2 + (1-4) - 2(1-4)4(-k) - k

(3.8)1 2

(3.8) < log(=4 + (1-4)(1-24(-k))

along the same line of thoughts we can simplify (3.9) to get

( 3 . 9 ) , 1 4 ( - 2 ) - ) ""
11-41( 1

Putting all these results together we finally have

(3.9) > 1 + (1-4)

.... * .. *. ... ... ~ %* *, **•****o%,.



m -r - . -

-19-

n •(1-4*)(1-24(-k)) + (1--4)

(l-4)(1-24(-k)) + log( 1 4 ) 2 (3.8)

if only we show that

~~ ~ l14 og (1 (3.10)

holds. This last inequality is only true for 4 small enough,

e.g. 4 < 0.5. For such 4 values we have

log(1 -) _< 34 (0 < 4< 0.5)

and (3.10) is therefore proved if we show that

1-41)-> 34

S-24(-k)

<-> 2kf(-k) (k)

<->3kf(-k) > O(k) for all .436 < k < oo. (3.11)

Note that the range of 4 values from 0 to 0.5 translates

into a range of values for k.

This last inequality (3.11) which is equivalent to

(3.10) does indeed hold and is left for the reader to check.

0
Proposition 3.1 is now proved for all the cases where

(3.6) is strictly positive. Some care is needed if (3.6) is

zero. Then the compromise estimator is asymptotically a con-

vex linear combination of T. and T. but since the asymp-
1 2

totic variance of TF is lower than the asymptotic vqriance
1

of Tr the compromise estimator will have an asymptotic2
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variance below the asymptotic variance of T2
2

remarks: (1) We have identified a class of sampling situa-

tions G, namely those where (3.6) is positive, for which the

mean is more efficient eitimatoc than Huber's minimax esti-

mator. It would be of interest to show how big this class is

and also to check whether it contains all sampling situa-

tions for which the sample mean is asymptotically better

than Huberas minimax estimator.

4. Discussion

This paper deals with estimators which- compromise

between different *shapes*. This idea, as we have seen, pro-

duces "robust' estimators. If we compromise between the

Gaussian and Huber's least favorable distribution we have a

family of estimators (for different values of c) which dom-

inate Huber's minimax MN-estimator asymptotically.

Several points need to be clarified, however. The idea of

compromising is different from the usual asymptotic robust-

ness theory as developed by Huber (see Huber (1964) and

Huber (1981)). There, the compromising takes place in a

neighborhood of the *central" model, whereas in our approach

the different shapes need not be close together. A neigh-

borhood model is in fact only a first step towards

robust/resistant techniques for small sample sizes. For sam-

ples of size 5 we would advise to compromise between the

Gaussian and something like the slash (= distribution of a

ratio of a Gaussian over an independent uniform) rather than

"p%
•oV
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using the only moderately tailed least favorable distribu-

tion.

The intention of this paper is not to show that we should

use a compromise between the Gaussian and the least favor-

able distribution, but rather to let people know of the mer-

its of compromise estimators in a language which many sta-

tisticians are used to, namely asymptotics.

Results found through small sample experiments are of

greater importance. It is clear for example that the situa-

tions (or shapes) we compromise ought to change with the

sample size. The amount of *information' in the sample grows

with the sample size. Not only are we able to estimate

"parameters* with less variability, we also gain insight

into the underlying shape. Compromise estimators use this

knowledge in an optimal way and with our choice of the

shapes we can fine-tune the proqedure. Important choices

have to be made in that respect and more (probably experi-

mental) research for small sample sizes is needed. Subject

matter knowledge might prove useful in this connection.

The extension of Pitaan's ideas to more than one shape

provides us with a tool to find meaningful small sample

methods of the robust/resistant kind. In order to make the

asymptotics simple we did not deal with the scale parameter.

In actual applications the inclusion of this additional

parameter is, however, no problem (see Bell and Morgenthaler

(1981) for an example).
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